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Caches

• Locality Principle
• Memory references

• Cache Organization
• Hit or Miss

• Block size

• Block starting address
• Aligned by block
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BLOCK LINE} }

int sum = 0;

for (int j=0, j<1000, j++)

sum = sum + arr[j];
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Block Offset and Block Number

• Processor produces a 32-bit address

• Example:
• Block Size = 16

• How many bits of address are used to 
determine where in the block we are?

• How many bits of the address tell us 
which block we are looking for? 
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Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…
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Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.



Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.

Line #

0

1

2

3

Cache

Block #

Tag



Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.
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Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.
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Address 
0x00014

Hit = (Tag == Block Number) AND Valid
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Types of Caches

• Fully Associative [Cache Size-Way SA]
• Any block of memory can be placed in any line of cache

• Direct Mapped [1-Way SA]
• A block of memory can only go in 1 line

• Set Associative
• N lines where a block can be placed
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Direct Mapped

If a block is in the cache it 
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETTAG INDEX
Tag tells us which block (of those possible) is in the cache. 
It does not include the index bits as they are redundant!

BLOCK NUMBER

• Considerations:
• Only need to search 1 place!

• Fast, cheap, efficient

• A block must go in 1 place!
• Underutilized, conflicts
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• Given:
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• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
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• 0x12341666
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Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

Index bits: 6 bits to address 64 blocks

INDEX

0x123456 77
0x113355 77
0x111156 78
0x123416 66

0x56 = 01  01 0110
0x55 = 01  01 0101
0x16 = 00  01 0110
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• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
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Direct Mapped Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0x3F1F

• [B] 0x3F2F

• [C] 0x3F2E

• [D] 0x3E1F

• What does the cache do?

Offset: 5 bits to address 32 Byte blocks

Index bits: 3 bits to address 7 cache lines

Tag bits: 8 bits remaining

0

1

2

7

Cache



Set-Associative Cache

• N-Way Set-Associative Cache
• A block can be placed in 1 of N lines

Cache
0

1

2

7

0

1

3

Line Number Set Number

2-Way SA so each set has 2 
lines where a block can go

Here we have:
8 cache lines
4 sets
2 ways



Set-Associative Caches: tag, index, offset

ADDRESS of location processor wants us to find in the cache
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Set-Associative Caches: tag, index, offset

• Block Offset is the same as 
before!

ADDRESS of location processor wants us to find in the cache
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Set-Associative Caches: tag, index, offset

• Block Offset is the same as 
before!

• Index bits determine set!
• With 4 sets we need 2 index bits
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Set-Associative Caches: tag, index, offset

• Block Offset is the same as 
before!

• Index bits determine set!
• With 4 sets we need 2 index bits

• Tag is the remaining block 
offset bits not used by index

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

Cache
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Line Number Set Number

Don’t keep index bits in tag! They are repeated



2-Way Set-Associative Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
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2-Way Set-Associative Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0xF303

• [B] 0xF503

• [C] 0xF563

• [D] 0xEF63

• What does the cache do?

Offset: 5 bits to address 32 Byte blocks

Index bits: 2 bits to address 4 sets

Tag bits: 9 bits remaining
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Line Number Set Number



Fully-Associative Cache

• Block Offset is the same as before!

• We do not need index bits!

• The tag is the size of the block offset!



Review

• A block is composed of Bytes
• Block size given in problem statements

• A block is the smallest unit of data we can pull from memory

• Sets are composed of (1 or more) blocks
• Number of sets = number of blocks / number of ways

• A block of memory goes in a cache line

• A cache is composed of sets
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Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

# OFFSET BITS = 
log2(block size)

# INDEX BITS = 
log2(# of sets)

# cache lines = 
cache size / block size

# TAG BITS 
= # ADDR_BITS – # INDEX BITS - # OFFSET BITS

# of sets = 
# cache lines / # ways
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