
Introduction to Caches
Quincy Flint

Caches

• Locality Principle
• Memory references

• Cache Organization
• Hit or Miss

• Block size

• Block starting address
• Aligned by block

Memory Cache

0
1
2
3
4

BLOCK LINE} }

int sum = 0;

for (int j=0, j<1000, j++)

sum = sum + arr[j];

address

Block Offset and Block Number

• Processor produces a 32-bit address

31 0

ADDRESS of location processor wants us to find in the cache

Block Offset and Block Number

• Processor produces a 32-bit address

• Example:
• Block Size = 16

CACHE shown as an array of LINES of size BLOCK SIZE

BLOCK SIZE

31 0

ADDRESS of location processor wants us to find in the cache

Block Offset and Block Number

• Processor produces a 32-bit address

• Example:
• Block Size = 16

• How many bits of address are used to
determine where in the block we are?

CACHE shown as an array of LINES of size BLOCK SIZE

BLOCK SIZE

31 0

ADDRESS of location processor wants us to find in the cache

Block Offset and Block Number

• Processor produces a 32-bit address

• Example:
• Block Size = 16

• How many bits of address are used to
determine where in the block we are?

CACHE shown as an array of LINES of size BLOCK SIZE

BLOCK SIZE

BLOCK OFFSET

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSET

Block Offset and Block Number

• Processor produces a 32-bit address

• Example:
• Block Size = 16

• How many bits of address are used to
determine where in the block we are?

• How many bits of the address tell us
which block we are looking for?

CACHE shown as an array of LINES of size BLOCK SIZE

BLOCK SIZE

BLOCK OFFSET

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSET

Block Offset and Block Number

• Processor produces a 32-bit address

• Example:
• Block Size = 16

• How many bits of address are used to
determine where in the block we are?

• How many bits of the address tell us
which block we are looking for?

CACHE shown as an array of LINES of size BLOCK SIZE

BLOCK SIZE

BLOCK OFFSET

BLOCK NUMBER

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Cache Tags

• A cache tag is a unique identifier for a block in cache line

Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…

Line #

0

1

2

3

Cache [DATA]

Block #

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…

Line #

0

1

2

3

Cache [DATA]

Block #

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Tag

Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…

Line #

0

1

2

3

Cache [DATA]

Block #

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Tag

=

=

=

=

BLOCK NUMBER

0

0

0

1

Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…

Line #

0

1

2

3

Cache [DATA]

Block #

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Tag

BLOCK OFFSET

=

=

=

=

BLOCK NUMBER

0

0

0

1

Cache Tags

• A cache tag is a unique identifier for a block in cache line

• Assume each cache line can contain any block from memory…

Line #

0

1

2

3

Cache [DATA]

Block #

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETBLOCK NUMBER

Tag

BLOCK OFFSET

Tag

=

=

=

=

BLOCK NUMBER

0

0

0

1

Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.

Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.

Line #

0

1

2

3

Cache

Block #

Tag

Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.

Line #

0

1

2

3

Cache

Block #

0x000

Tag
Address
0x00014

Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.

Line #

0

1

2

3

Cache

Block #

0x000

Tag

0

Valid
Address
0x00014

Valid Bit

• The valid bit in a cache entry tells us if the data is real or not.

• Solves the problem of ambiguity of tag and data when initialized.

Line #

0

1

2

3

Cache

Block #

0x000

Tag

0

Valid
Address
0x00014

Hit = (Tag == Block Number) AND Valid

Types of Caches

• Fully Associative
• Any block of memory can be placed in any line of cache

Types of Caches

• Fully Associative
• Any block of memory can be placed in any line of cache

• Direct Mapped
• A block of memory can only go in 1 line

Types of Caches

• Fully Associative
• Any block of memory can be placed in any line of cache

• Direct Mapped
• A block of memory can only go in 1 line

• Set Associative
• N lines where a block can be placed

Types of Caches

• Fully Associative [Cache Size-Way SA]
• Any block of memory can be placed in any line of cache

• Direct Mapped [1-Way SA]
• A block of memory can only go in 1 line

• Set Associative
• N lines where a block can be placed

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSET

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETINDEX

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETTAG INDEX

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETTAG INDEX

BLOCK NUMBER

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETTAG INDEX
Tag tells us which block (of those possible) is in the cache.
It does not include the index bits as they are redundant!

BLOCK NUMBER

Direct Mapped

If a block is in the cache it
MUST be in these places!

Memory

…

Cache

31 0

ADDRESS of location processor wants us to find in the cache

3

BLOCK OFFSETTAG INDEX
Tag tells us which block (of those possible) is in the cache.
It does not include the index bits as they are redundant!

BLOCK NUMBER

• Considerations:
• Only need to search 1 place!

• Fast, cheap, efficient

• A block must go in 1 place!
• Underutilized, conflicts

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

INDEX

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

INDEX

8

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

Index bits: 6 bits to address 64 blocks

INDEX

8

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

Index bits: 6 bits to address 64 blocks

INDEX

6 8

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

Index bits: 6 bits to address 64 blocks

INDEX

6 8

0x123456 78

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

Index bits: 6 bits to address 64 blocks

INDEX

0x123456 77
0x113355 77
0x111156 78
0x123416 66

6 8

0x123456 78

Direct Mapped Cache Quiz 1

• Given:
• 16 kB direct-mapped cache

• 256 Byte blocks

• Address 0x12345678

• Which blocks conflict?
• 0x12345677

• 0x11335577

• 0x11115678

• 0x12341666

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG

Offset: 8 bits to address 256 Byte blocks

Number of Blocks = 16 kB cache/ 256 Bytes per block = 64

Index bits: 6 bits to address 64 blocks

INDEX

0x123456 77
0x113355 77
0x111156 78
0x123416 66

0x56 = 01 01 0110
0x55 = 01 01 0101
0x16 = 00 01 0110

6 8

0x123456 78

Direct Mapped Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0x3F1F

• [B] 0x3F2F

• [C] 0x3F2E

• [D] 0x3E1F

• What does the cache do?

0

1

2

7

Cache

Direct Mapped Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0x3F1F

• [B] 0x3F2F

• [C] 0x3F2E

• [D] 0x3E1F

• What does the cache do?

Offset: 5 bits to address 32 Byte blocks

0

1

2

7

Cache

Direct Mapped Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0x3F1F

• [B] 0x3F2F

• [C] 0x3F2E

• [D] 0x3E1F

• What does the cache do?

Offset: 5 bits to address 32 Byte blocks

Index bits: 3 bits to address 7 cache lines

0

1

2

7

Cache

Direct Mapped Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0x3F1F

• [B] 0x3F2F

• [C] 0x3F2E

• [D] 0x3E1F

• What does the cache do?

Offset: 5 bits to address 32 Byte blocks

Index bits: 3 bits to address 7 cache lines

Tag bits: 8 bits remaining

0

1

2

7

Cache

Set-Associative Cache

• N-Way Set-Associative Cache
• A block can be placed in 1 of N lines

Cache
0

1

2

7

0

1

3

Line Number Set Number

2-Way SA so each set has 2
lines where a block can go

Here we have:
8 cache lines
4 sets
2 ways

Set-Associative Caches: tag, index, offset

ADDRESS of location processor wants us to find in the cache

Cache
0

1

2

7

0

1

3

Line Number Set Number

Set-Associative Caches: tag, index, offset

• Block Offset is the same as
before!

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSET

Cache
0

1

2

7

0

1

3

Line Number Set Number

Set-Associative Caches: tag, index, offset

• Block Offset is the same as
before!

• Index bits determine set!
• With 4 sets we need 2 index bits

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETINDEX

Cache
0

1

2

7

0

1

3

Line Number Set Number

Set-Associative Caches: tag, index, offset

• Block Offset is the same as
before!

• Index bits determine set!
• With 4 sets we need 2 index bits

• Tag is the remaining block
offset bits not used by index

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

Cache
0

1

2

7

0

1

3

Line Number Set Number

Don’t keep index bits in tag! They are repeated

2-Way Set-Associative Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0xF303

• [B] 0xF503

• [C] 0xF563

• [D] 0xEF63

• What does the cache do?

Cache
0

1

2

7

0

1

3

Line Number Set Number

2-Way Set-Associative Cache Quiz

• Given:
• Byte addressable cache

• 32 Byte blocks

• Sequence of addresses
• [A] 0xF303

• [B] 0xF503

• [C] 0xF563

• [D] 0xEF63

• What does the cache do?

Offset: 5 bits to address 32 Byte blocks

Index bits: 2 bits to address 4 sets

Tag bits: 9 bits remaining

Cache
0

1

2

7

0

1

3

Line Number Set Number

Fully-Associative Cache

• Block Offset is the same as before!

• We do not need index bits!

• The tag is the size of the block offset!

Review

• A block is composed of Bytes
• Block size given in problem statements

• A block is the smallest unit of data we can pull from memory

• Sets are composed of (1 or more) blocks
• Number of sets = number of blocks / number of ways

• A block of memory goes in a cache line

• A cache is composed of sets

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

OFFSET BITS =
log2(block size)

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

OFFSET BITS =
log2(block size)

INDEX BITS =
log2(# of sets)

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

OFFSET BITS =
log2(block size)

INDEX BITS =
log2(# of sets)

of sets =
cache lines / # ways

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

OFFSET BITS =
log2(block size)

INDEX BITS =
log2(# of sets)

of sets =
cache lines / # ways

cache lines =
cache size / block size

Recap

• Direct Mapped is 1-way SA

• Fully Associative is N-way SA

ADDRESS of location processor wants us to find in the cache

BLOCK OFFSETTAG INDEX

OFFSET BITS =
log2(block size)

INDEX BITS =
log2(# of sets)

cache lines =
cache size / block size

TAG BITS
= # ADDR_BITS – # INDEX BITS - # OFFSET BITS

of sets =
cache lines / # ways

References

• Patterson and Hennessy, Computer Organization and Design

• David Black-Schaffer

