
Computer Architecture
PhD Qualifying Exam

Review Session

November, 2018

Quincy FLINT

Reminders

• Register for exam by December 7th at 5 pm!

• Exchange numbers and study together
• Unsupervised study sessions

• Work the practice exams before next review session

Important Dates

• 12/07/2018 – Qualifying exam registration closes (Friday, 5 pm)

• 12/10-14/2018 – Un-proctored study sessions

• 01/07-11/2019 – TBD final review session

• 01/??/2019 – Qualifying exam (Saturday, time TBD)

Resources

• Textbooks
• Computer Organization and Design – Patterson, Hennessy
• Computer Architecture – A Quantitative Approach – Patterson, Hennessy

• UF Past Practice Exams
• https://www.ece.ufl.edu/content/phd-written-qualifying-exam-questions

• UF Exam Study Guide
• https://www.ece.ufl.edu/sites/default/files/pictures/ComputerOrganization.pdf

• Exam Registration
• https://gradadmissions.ece.ufl.edu/srs-servlet/examRegistration/phd

https://www.ece.ufl.edu/content/phd-written-qualifying-exam-questions
https://www.ece.ufl.edu/sites/default/files/pictures/ComputerOrganization.pdf
https://gradadmissions.ece.ufl.edu/srs-servlet/examRegistration/phd

Boolean Algebra

• Algebra with 0’s and 1’s
• X + 0 = X

• X + 1 = 1

• X * 1 = X

• X * 0 = 0

• Idempotent Laws
• X + X = X

• X * X = X

• Complement Laws
• X + /X = 1

• X * /X = 0

Boolean Algebra

• Dual:
• 1 0

• + ×

X + 0 = X X × 1 = X

X + 1 = 1 X * 0 = 0

X + /X = 1 X * /X = 0

• DeMorgan’s Laws
• NOT(X+Y+Z) = NOT(X) * NOT(Y) * NOT(Z)

• NOT(X*Y*Z) = NOT(X) + NOT(Y) + NOT(Z)

• Consensus Theorem
• XY + YZ + \XZ = XY + \XZ

Proof - example

Number Systems

• Base 10: 541 = 5×102 + 4×101 + 1×100

= 5×100 + 4×10 + 1×1

• Base 2: 0101 = 0×23 + 1×22 + 0×21 + 1×20

= 0×8 + 1×4 + 0×2 + 1×1

Conversion between systems

• Decimal to Binary
1. Brute Force -- “Count it out”
2. Divide by 2 – remainder becomes binary (least to most significant)

• Decimal to Hex
1. Convert to Binary then groups of 4 bits
2. Divide by 16 -- remainder becomes hex (least to most significant)

• Decimal to Octal
1. Convert to Binary then groups of 3 bits
2. Divide by 8 -- remainder becomes octal (least to most significant)

Boolean Arithmetic

• Think back to basic arithmetic in base 10

• Let’s just do some problems

Signed Number Representations

• Signed Magnitude:
• MSB gives sign

• 1000 0101 = -5

• 1’s Complement:
• if MSB is 1 – flip bits and apply minus sign

• If MSB is 0 – do nothing, positive

• 1111 1100 (flipped = 0000 0011) = -3

• 2’s Complement:
• if MSB is 1 – flip bits, add 1, and apply minus sign

• 1111 1101 (flipped + 1 = 0000 0011) = -3

Alternate 2’s Complement Solution

• 2’s Complement:

•1011
1. Flip Bits: 0100

2. Add 1: 0101

3. Interpret: -5

• 2’s Complement:

•1011
| | |
-8 + 2 + 1 = -5

Floating Point Numbers

• Single Precision
• [31][30 … 23][22 … 0]
• Bias (B) = 28-1 – 1 = 127

• Double Precision
• [63][62 … 52][51 … 0]
• Bias (B) = 211-1 – 1 = 1023

• Ex: 0xC0C0 0000 to decimal

• Q: Precision and Range?

FP Number = (-1)S * (1 + M) * 2X-B

Sign
(1)

S X M

Exp’nt
(8)

Mantissa
(23)

Single Precision Floating Point

S X M

Sign
(1)

Exp’nt
(11)

Mantissa (52)

Double Precision Floating Point

Floating Point Arithmetic

• Steps to perform FP addition
1. Align radix

• Calculate difference in exponent D = X> - X<

• Choose same exponent, X< = X>

• Align mantissa, shift “hidden bit” into M< by D [de-normalize]

2. Perform operation
• Keep same exponent

• Add mantissa fields

3. Re-Normalize

• Example: add 3E80 000 to 42C8 0000

Caches

• Open cache slides

Cache Basics

• Associativity:
• 1-way [Direct Mapped]

• N-way Set-Associative

• All-the-way [Fully Associative]

• Finding a block in cache:

• Cache index = Ram Block Address
mod Number Sets in Cache

Turquoise = entire set
Blue = selected block
Arrow = block placement

Direct Mapped Cache

• RAM Size = M (Bytes)

• # Bits to address RAM = m = M log 2

• # RAM addresses = 2m

• Cache Size = K (Bytes)

• # Bits to address cache = k = K log 2

• # Cache addresses = 2k

• (RAM) Block Size = N (Blocks)

• # Bits to address blocks in cache = n = N log 2

• # Memory block in cache line = 2n

• # (RAM) Blocks = 2m/2n = 2m-n

Example: 16-Byte RAM, 4-Byte Cache
(Direct Mapped), 1-Byte Memory Blocks

RAM
(Memory)

Cache

Direct Mapped Cache + 2-Byte Blocks

• RAM Size = N = 16 (Bytes)
• # Bits to address RAM = n = 4

• Cache Size = M = 4 (Bytes)
• # Bits to address cache = m = 2

• (RAM) Block Size = K = 2 (blocks)
• # Bits to address blocks in cache = n = 1

• # (RAM) Blocks = 24-1 = 23 = 8

Example: 16-Byte RAM, 8-Byte Cache
(Direct Mapped), 2-Byte Memory Blocks

RAM
(Memory)

Cache

M-Bit Address

• Offset = rem(block number / block size)

• Index = (memory set number) mod (cache size)
= lowest k bits of block set address

• Tag = most significant bits of block set address not used by index

Cache Set
Index

Block
Offset

Tag
(MSB of Block Address)

k bits n bitsm-k-n bits

Virtual Memory

• Virtual memory slides

Virtual Memory

• VM solves 3 problems:
• Not enough physical RAM

• Data Fragmentation

• Programs overwriting memory

• Virtual Memory…
• Uses the hard drive like another layer of memory abstraction

• Maps virtual addresses to physical addresses (*)

Virtual Memory Continued…

• ISA determines virtual address space (MIPS => 232 bits)

• Physical Address space based on RAM

• Page Fault: when page table entry not in RAM we must fetch it

• Dirty Bit: VM does not write-through, instead dirty bit is set on writes

• How long does a page fault take?

MIPS Instruction Set

• 32 bit (4 Byte) instructions

• 3 basic instruction types

Addressing Modes [MIPS]

• Register Addressing (direct)
• add $t0, $t1, $t2
• PC <= R[s] (program counter gets contents of register s)

• Base Addressing (indirect)
• Load and Store instructions
• lw $rt, offset_value($rs)
• ADDR <= R[s] + sign_extend(offset_value)

• Immediate Addressing
• addi $t1, $t0, immediate
• PC <= R[s] + immediate

• PC-Relative Addressing (branch instructions)
• I-type instructions
• PC <= PC + sign_extend(SLL(IR15-0 , 2))

If-Else Loop MIPS

Pseudocode:

if (a < b + 3)

a = a + 1

else

a = a + 2

b = b + a

Register mappings:

a: $t0, b: $t1

Assembly Equivalent

addi $t2, $t1, 3 # tmp = b + 3

blt $t0, $t2, THEN # if (a < tmp)

addi $t0, $t0, 2 # (else case) a=a+2

j END

THEN: addi $t0, $t0, 1 # (then case) a=a+1

END: add $t1, $t1, $t0 # b = b + a

MIPS Datapath

• 5 stage pipeline example
• Fetch, Read/decode, ALU,

Memory (optional), Write

Data Dependencies (and Hazards)

• RAW [Flow, True] Dependency

• WAW [Output, False] Dependency

• WAR [Anti-, False] Dependency

• Dependence: A property of the program

• Hazard: A property of the pipeline
• Occurs when dependence causes incorrect execution

Identifying Dependencies

• Example: identify dependencies in following code
ADD R1, R2, R3

SUB R7, R1, R8

MUL R1, R5, R6

• Control Hazards: We must flush pipeline

• Data Hazards: We can stall pipeline or forward instructions

Amdahl’s Law

• Amdahl’s Law: Speedupnew =
1

1−𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑒𝑛ℎ𝑎𝑛𝑐𝑒
𝑑郆 + ൗ𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

• 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅 is “the fraction of the computation time in the original computer that can
be converted to take advantage of the enhancement” (<= 1)

• 𝑺𝒑𝒆𝒆𝒅𝒖𝒑𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅 is “the improvement gained by the enhanced execution mode – how much
faster the task would run if the enhanced mode were used for the entire program” (> 1)

• Example: Patterson Hennessy Problem

PH Chapter 1 – Problem 17

PH Chapter 2 – Problem 19

PH Chapter 2 – Problem 19

Associativity Access Time Cycle Time

1-Way 0.863 ns 0.504 ns

2-Way 1.121 ns 0.509 ns

4-Way 1.371 ns 0.829 ns

8-Way 2.035 ns 0.790 ns

Previously Calculated for (a)

PH Chapter 2 – Problem 19

Associativity Access Time Cycle Time

1-Way 0.863 ns 0.504 ns

2-Way 1.121 ns 0.509 ns

4-Way 1.371 ns 0.829 ns

8-Way 2.035 ns 0.790 ns

Previously Calculated for (a)

Equations:
Avg. Access Time = (Hit% × Hit Time) + (Miss% × Miss Penalty)
Hit Time = Access Time / Cycle Time [Cycles]
Miss % = Misses per Instruction / References per Instruction
Hit % = 1 - Miss %
Miss Penalty = Cache Miss Time / Cycle Time [Cycles]

